Vmwa I’e® Technical Note

Virtual Disk Format 5.0

VMware ESXi and Hosted Products

The document describes the virtual machine disk (VMDK) format and contains the following sections:
® “Virtual Disks for Virtual Machines” on page 1

® “Layout Basics” on page 2

B “The Descriptor File” on page 3

B “Simple Extents” on page 5

® “ESXi Host Sparse Extents” on page 9

B “Stream-Optimized Compressed” on page 11

® “Glossary” on page 14

Virtual Disks for Virtual Machines

When a virtual machine’s operating system reads and writes to virtual disk, it uses the same interfaces as for
physical disk. VMware designed the VMDK (virtual machine disk) format to mimic the operation of physical
disk. Virtual disks are stored as one or more VMDK files on the host computer or remote storage device, and
appear to the guest operating system as standard disk drives.

VMware platform products all support the VMDK format, with slight variations.

Hosted platform products such as VMware Workstation or VMware Fusion store VMDK files on a file system
provided by an underlying host operating system, either Windows, Linux, or Mac OS X.

Datacenter platform products store VMDK files either on the local storage of an ESXi host, or on a network
connected storage device. On ESXi hosts, VMDK files are usually stored on VMEFS (virtual machine file system)
partitions, optimized for large-file storage, but can also be stored on NAS partitions (NFS).

VMFS-3 was introduced in ESX 3.0 and still supported for ESX/ESXi 4.0 and 4.1. VMFS-4 was never released.
VMware introduced VMFS-5 in vSphere 5, with enhancements shown in Table 1.

Table 1. Comparison of VMFS-3 and VMFS-5

VMFS-3 VMFS-5
The largest extent for a disk volume was 2TB. Extent limit increased to ~60TB, for larger volumes including RDM.
MBR (master boot record) partition type. GPT (GUID partition table) supports larger extents.

Block size was 1, 2, 4, or 8MB for very large files. ~ Unified 1MB block size supports very large files > 256GB.

Smallest sub-block was 64KB. 8KB sub-block so small files consume less space and grow easily.
Maximum file count was 30,720. Support for > 100,000 files per volume.

Maximum VMDK file size is 2TB. Same limit.

Maximum number of supported LUNSs is 256. Same limit.

Locking of entire LUN by SCSI reservation. Per-sector VAAI hardware-assisted locking reduces disk contention.

VMware, Inc. 1

Virtual Disk Format 5.0

Information in this technical note applies to virtual disks created on Workstation 5 or later, VMware Fusion,
VMware Server, ESX 3.0 or later, and ESXi 3.5 or later. Earlier products may use formats different from the ones
described here. Topics that are not discussed in this document include the following:

B Virtual disks created on ESX 2 hosts or earlier, GSX 3 or earlier, Workstation 4 or earlier, or VMware ACE.
Also virtual disks created in legacy mode on Workstation 5.

m Device-backed virtual disks.
B Encryption, including encrypted extents and encrypted descriptor files.
B Defragmenting, shrinking, and consolidating of virtual disks.

This technical note proceeds with a high-level introduction to the layout of the files that make up a VMware
virtual disk. It then drills down into details of the data structures inside those virtual disk files.

Layout Basics

VMware virtual disks can be described at a high level by looking at two key characteristics:

B The virtual disk may use backing storage contained in a single file, or it may use storage that consists of
a collection of smaller files.

® All of the disk space needed for a virtual disk’s files may be allocated at the time the virtual disk is created,
or the virtual disk may start small and grow as needed to accommodate new data.

A particular virtual disk may have any combination of these two characteristics.

One characteristic of recent-generation VMware virtual disks is that a text descriptor describes the layout of
the data in the virtual disk. This descriptor may be saved as a separate file or may be embedded in a file that
is part of a virtual disk. The section titled “The Descriptor File” on page 3 explains the information contained
in the descriptor.

The way a virtual disk uses storage space on a physical disk varies, depending on the type of virtual disk you
select when you create the virtual machine.

Initially, for example, a virtual disk consists of only the base disk. If you take a snapshot of a virtual machine,
its virtual disk includes both the base link and a delta link (referred to in some product documentation as a
redo-log file). When the guest operating system writes to disk, changes since you took the snapshot are stored
in the delta link. It is possible for more than one delta link to be associated with a particular base disk.

You can think of the base disk and the delta links as links in a chain. The virtual disk consists of all the links in
the disk chain.

Figure 1. Links in the chain comprise the virtual disk

Link A Base disk
Link B Delta link 1
Link C Delta link 2

Each link in the chain is made up of one or more extents.

Figure 2. Extents that make up a link

Extent O Extent 1 Extent 2 Extent 3

An extent is a region of physical storage, often a file, that is used by the virtual disk.

In the links diagram above, links B and C are necessarily made up of extents that begin small and grow over
time, referred to as sparse extents. Link A can be made up of extents of any kind — sparse, preallocated, or even
backed directly by a physical device.

VMware, Inc. 2

Virtual Disk Format 5.0

The Descriptor File

For a more detailed view of how these elements of a virtual disk come together in practice, look at the
following example text descriptor file, called test.vmdk. It describes a link in a virtual disk that is split into
files no larger than 2GB each and that starts small and grows as data is added.

Contents of the descriptor file are not case-sensitive. Lines beginning with # are comments and are ignored by
the VMware program that opens the disk.

% cat test.vmdk
Disk DescriptorFile
version=1

CID=fffffffe
parentCID=Fffffffff
createType="twoGbMaxExtentSparse"

Extent description

RW 4192256 SPARSE "test-s001.vmdk"
RW 4192256 SPARSE "test-s002.vmdk"
RW 2101248 SPARSE "test-s003.vmdk"

The Disk Data Base

#DDB

ddb.adapterType = "ide
ddb.geometry.sectors = "63"
ddb.geometry.heads = "16"
ddb.geometry.cylinders = "10402"

The Header

The first section of the descriptor is the header. It provides the following information about the virtual disk:

VMware, Inc.

version — The number following version is the version number of the descriptor. The default value is 1.

CID - This line shows the content ID. It is a random 32-bit value updated the first time the content of the
virtual disk is modified after the virtual disk is opened. Every link header contains both a content ID and
a parent content ID (described below).

If a link has a parent — as is true of links B and C in the diagram of links in a chain — the parent content ID
is the content ID of the parent link.

If a link has no parent — as is true of link A in the diagram of links in a chain — the parent content ID is set
to FFfFffff (see parentCID below).

The purpose of the content ID is to check the following;:

B Inthe case of a base disk with a delta link, that the parent link has not changed since the time the delta
link was created. If the parent link has changed, the delta link must be invalidated.

® That the bottom-most link was not modified between the time the virtual machine was suspended
and the time it was resumed, or between the time you took a snapshot of the virtual machine and the
time you reverted to the snapshot.

parentCID - This line shows the content ID of the parent link — the previous link in the chain — if it exists.
If the link does not have any parent (that is, the link is a base disk) the parentCID is set to ffffffff.

createType — This line describes the type of virtual disk. Flat disk is fully allocated at creation time
(pre-allocated). Sparse disk is allocated as needed to store data. Not including legacy types of virtual disk,
createType can be one of the following;:

B custom- descriptor file with arbitrary extents.

B monolithicSparse - single sparse extent with embedded descriptor file.

B monolithicFlat - single flat extent with separate descriptor file.

B 2GbMaxExtentSparse - sparse extents 2GB or smaller to account for file system limits.
B 2GbMaxExtentFlat - flat extents 2GB or smaller to account for file system limits.

m fullDevice - disk that takes the properties of, and is backed by, physical disk on the host.

Virtual Disk Format 5.0

B partitionedDevice - disk backed by some partitions of physical disk, with other partitions hidden.
® vmfsPreallocated — thick (flat) disk on VMFS, with blocks zeroed on first use.

m vmfsEagerZeroedThick — pre-allocated (flat) disk on VMFS, with all blocks zeroed when created.
B vmfsThin - thin-provisioned VMFS disks that consume only as much space as needed.

B vmfsSparse —sparse disk on VMES, often a redo log, not to be confused with thin-provisioned disk.
B vmfsRDM - virtual compatibility raw device map (RDM) acts like a symbolic link to physical disk.

B vmfsRDMP — physical compabibility RDM, similar but sends SCSI commands to underlying hardware.
® vmfsRaw - special raw disk for ESXi hosts, passthrough only mode.

B streamOptimized — compressed sparse extents with embedded LBA, useful for OVF streaming.

The first seven disk types are for VMware hosted products. Terms that include monolithic indicate that
the virtual disk is contained in a single file. Terms that include 2GbMaxExtent indicate that the virtual disk
consists of a collection of smaller files. Terms that include sparse indicate that a virtual disk starts small
and grows to accommodate data. Terms that include flat indicate that disk space is allocated at creation
time. Product documentation also uses the terms growable and preallocated, respectively.

Terms prefixed by vmfs are used for storage on ESXi hosts. TYpe vmfsSeSparse is for space-efficient
sparse disk used for new-style redo logs. Type vmfsThick refers to non-zeroed preallocated disk, and is
deprecated. Types vmfsRawDeviceMap and vmfsPassthroughRawDeviceMap are used in headers for
disks that use ESXi raw device mapping.

Types fullDevice, partitionedDevice, and vmfsRaw are used when a virtual machine is configured to
make direct use of a physical disk, or partitions on a physical disk, rather than configured to store data in
files managed by a host operating system or VMFS.

The term streamOptimized is used to describe disks that have been optimized for streaming.

® parentFileNameHint - This line, present only if the link is a delta link, contains the path to the parent of
the delta link.

The Extents

Each line of the second section describes one extent. The extents are enumerated beginning with the one
accessible at offset 0 from the virtual machine’s point of view. The format of the line looks like one of the
following examples:

RW 4192256 SPARSE "test-s001. vrdk"

Access Type of extent Filename

Size in sectors

RW 1048576 FLAT "test-f001.vnmdk" O
Access Typeofextent Filename Offset
Size in sectors
The extent descriptions provide the following key information:
B Access — may be RW, RDONLY, or NOACCESS
B Size in sectors — a sector is 512 bytes
® Type of extent — may be FLAT, SPARSE, ZERO, VMFS, VMFSSPARSE, VMFSRDM, or VMFSRAW.

® Filename - shows the path to the extent (relative to the location of the descriptor).
If the type of the virtual disk, shown in the header, is fullDevice or partitionedDevice, then the filename
should point to an IDE or SCSI block device. If the type of the virtual disk is vmfsRaw, the filename should
point to a file in /vmfs/devices/disks/.

VMware, Inc. 4

Virtual Disk Format 5.0

m Offset - the offset value is specified only for flat extents and corresponds to the offset in the file or device
where the guest operating system’s data is located. For preallocated virtual disks, this number is zero. For
device-backed virtual disks (physical or raw disks), it may be non-zero.

The Disk Database

Additional information about the virtual disk is stored in the disk database section of the descriptor. Each line
corresponds to one entry. Each entry is formatted as follows:

ddb.<nameOfEntry> = "<value of entry>"

When the virtual disk is created, the disk database is populated with entries like those shown in the example
descriptor. The entry names are self-explanatory and show the following information:

B The adapter type can be ide, buslogic, 1silogic, or legacyESX. The buslogic and 1silogic values
are for SCSI disks and show which virtual SCSI adapter is configured for the virtual machine. The
legacyESX value is for older ESX/ESXi hosts when the adapter type used in creating the virtual machine
is not known.

B The geometry values — for cylinders, heads, and sectors — are initialized with the geometry of the disk,
which depends on the adapter type.

There is one descriptor, and thus one disk database, for each link in a chain. Searches for disk database
information begin in the descriptor for the bottom link of the chain — Link C in the illustration of links in the
chain — and work their way up the chain until the information is found.

Layout of the Example Disk

The link described in the example descriptor has three extents, each of which is a file on disk. The following
diagram shows the layout of this link and the filenames of the extents:

test-s001. vidk test-s002. vidk test-s003. vidk

Simple Extents

The simplest kinds of extents are backed by a region of a file or a block device. These include the extent types
shown in the descriptor as FLAT, VMFS, VMFSRDM, or VMFSRAW.

Monolithic or Flat VMDK

A virtual disk described as monolithic and flat consists of two files. One file contains the descriptor. The other
file is the extent used to store virtual machine data.

Consider an extent that is described by the following line in a descriptor file.
RW 1048576 FLAT "test-f001.vmdk" 0
This means that file test-f001.vmdk is 1048576 sectors x 512 bytes/sector = 536870912 bytes = 512MB in size.

In VMware ESXi hosts, each link includes only one extent.

Accessing a Sector in a Flat Extent

Assume you want access to data in a link that is made up of two flat extents. The size of the first extent is C1.
The size of the second extent is C2. You want access to sector xin the virtual disk, and x' is the sector offset in
extent 1 or 2 where xis located.

m If x >= (1, the sector is in extent2. Its relative sector offsetis: x' = x - C1

m If x < (1, the sector is in extent] at offset x: x' = x

VMware, Inc. 5

Virtual Disk Format 5.0

Hosted Sparse Extents

In a sparse extent, data storage space is not allocated in advance. Instead, space is allocated as it is needed. A
sparse extent also keeps track of whether or not data is represented in the extent. Delta links made up of sparse
extents use the copy-on-write semantic. Each sparse extent is made up of the following blocks:

Sparse header
Embedded descriptor (Optional)
Redundant grain directory

Redundant grain table #0

Redundant grain table #n
Grain directory

Grain table #0

Grain table #n
(Padding to grain align)
Grain

Grain

Hosted Sparse Extent Header

The following example shows the content of a sparse extent’s header from a VMware hosted product, such as
VMware Workstation, VMware Player, VMware Fusion, VMware ACE, or VMware (GSX) Server:

typedef uint64 SectorType;
typedef uint8 Bool;
typedef struct SparseExtentHeader {

uint32 magicNumber;
uint32 version;
uint32 flags;

SectorType capacity;
SectorType grainSize;
SectorType descriptorOffset;
SectorType descriptorSize;
uint32 numGTEsPerGT;
SectorType rgdOffset;
SectorType gdOffset;
SectorType overHead;

Bool uncleanShutdown;
char singleEndLineChar;
char nonEndLineChar;
char doubleEndLineCharl;
char doubleEndLineChar2;
uintl6 compressAlgorithm;
uint8 pad[433];

} SparseExtentHeader;

This structure needs to be packed. If you use gcc to compile your application, you must use the keyword
__attribute__((__packed__)).

Notes:
® All the quantities defined as SectorType are in sector units.

® magicNumber is initialized with
#define SPARSE_MAGICNUMBER 0x564d444b /* 'V' 'M' 'D' 'K' */
This magic number is used to verify the validity of each sparse extent when the extent is opened.

VMware, Inc. 6

Virtual Disk Format 5.0

B version - The version number can be 1 or 2. See “Version 2 Hosted Sparse Extents” on page 7.

SparseExtentHeader is stored on disk in little-endian byte order, so if you examine the first eight bytes
of a VMDXK file, you see 'K’ ‘D" ‘M’ “V’ 0x01 6x00 0x00 0x00 or ‘K’ ‘D" "M’ "V’ 0x02 0x00 0x00 0x00.

® flags contains the following bits of information in the current version of the sparse format:
B Dbit 0: valid new line detection test.
B bit 1: redundant grain table will be used.
B bit 2: zeroed-grain GTE will be used. See “Version 2 Hosted Sparse Extents,” below.
B Dit 16: the grains are compressed. The type of compression is described by compressAlgorithm.

B bit 17: there are markers in the virtual disk to identify every block of metadata or data and the
markers for the virtual machine data contain logical block addressing (LBA).

B grainSize is the size of a grain in sectors. It must be a power of 2 and must be greater than 8 (4KB).
B capacity is the capacity of this extent in sectors — should be a multiple of the grain size.

B descriptorOffset is the offset of the embedded descriptor in the extent. It is expressed in sectors. If the
descriptor is not embedded, all the extents in the link have the descriptor offset field set to 0.

B descriptorSizeisvalid only if descriptorOffset is non-zero. It is expressed in sectors.

B numGTEsPerGT is the number of entries in a grain table. The value of this entry for virtual disks is 512.
B rgdOffset points to the redundant level 0 of metadata. It is expressed in sectors.

B gdOffset points to the level 0 of metadata. It is expressed in sectors.

® overHead is the number of sectors occupied by the metadata.

® uncleanShutdown is set to FALSE when VMware software closes an extent. After an extent has been
opened, software checks for the value of uncleanShutdown. If TRUE, the disk is checked for consistency
and uncleanShutdown is set to TRUE after this consistency check. Thus, if the software crashes before the
extent is closed, this boolean is found to be set to TRUE the next time the virtual machine is powered on.

® Four entries are used to detect when an extent file has been corrupted by transferring it using FTP in text
mode. The entries should be initialized with the following values:
singleEndLineChar = '\n';

nonEndLineChar = ' ';
doubleEndLineCharl = '\r';
doubleEndLineChar2 = '\n';

B compressAlgorithm designates the algorithm to compress every grain in the virtual disk. If bit 16 of the
flags field is not set, COMPRESSION_NONE is assumed. The deflate algorithm is described in RFC 1951.
#define COMPRESSION_NONE 0
#define COMPRESSION_DEFLATE 1

Version 2 Hosted Sparse Extents

Recent VMware hosted platform products support a new “zeroed-grain” grain table entry (GTE). The
zeroed-grain GTE returns all zeros on read. In other words, the zeroed-grain GTE indicates that a grain in the
child disk is zero-filled but does not actually occupy space in storage. A sparse extent with zeroed-grain GTE
has the following in its header:

m SparseExtentHeader.version=2
B SparseExtentHeader.flags has bit 2 set

Other than the new flag and the possibly zeroed-grain GTE, version 2 sparse extents are identical to version 1.
Also, a zeroed-grain GTE has value 0x1 in the GT table (for details, see “Summary” on page 9). Currently
version 2 hosted sparse extents occur when you shrink a child disk (also called snapshot). They may occur in
other circumstances. When a shrink operation (also called compact) is done on a version 1 child disk, the
version number is upgraded to 2, and the compacted disk takes up less space than it would otherwise.

VMware, Inc. 7

Virtual Disk Format 5.0

Releases before Workstation 5 cannot read version 2 sparse disks, but all releases of VMware Fusion can.
Products may (but are not required to) downgrade a version 2 sparse extent to version 1 if the extent no longer
contains a zeroed-grain GTE. This is done by setting version = 1 and setting bit 2 of flags to 0.

Hosted Sparse Extent Metadata

There are two levels of metadata in a sparse extent from a hosted VMware product. Level-0 metadata is called
a grain directory or a GD. Level-1 metadata is called a grain table or a GT. Each entry in the level-0 metadata
points to a block of level-1 metadata, as shown in the following diagram:

GDE#0 | GDE#1 | GDE#2 | GDE#3 | ... GD:level 0
GTE#0 GTE#0 GTE#0
GTE#1 GTE#1 GTE#1
GTE#2 GTE#2 GTE#2
GTE#3 GTE#3 GTE#3 GTs:level 1
Redundancy

VMware software keeps two copies of the grain directories and grain tables on disk to improve the virtual
disk’s resilience to host drive corruption.

Grain Directory

Each entry in a grain directory is called a grain directory entry or GDE. A grain directory entry is the offset in
sectors of a grain table in a sparse extent. The number of grain directory entries per grain directory (the size of
the grain directory) depends on the length of the extent. A grain directory entry is a 32-bit quantity.

Grain Table

Each entry in a grain table is called a grain table entry or GTE. A grain table entry points to the offset of a grain
in the sparse extent. There are always 512 entries in a grain table, and a grain table entry is a 32-bit quantity.
Consequently, each grain table is 2KB.

In a newly created sparse extent, all the grain table entries are initialized to 0, meaning that the grain to which
each grain table entry points is not yet allocated. Once a grain is created, the corresponding grain table entry
is initialized with the offset of the grain in the sparse extent in sectors.

All the grain tables are created when the sparse extent is created, hence the grain directory is technically not
necessary but has been kept for legacy reasons. If you disregard the abstraction provided by the grain
directory, you can redefine grain tables as blocks of grain table entries of arbitrary size. If there were no grain
directories, there would be no need to impose a length of 512 entries.

Grain

A grain is a block of sectors containing data for the virtual disk. The granularity is the size of a grain in sectors.
It is a property of the extent and is specified in the sparse extent header as grainSize. The default is currently
128, thus each grain contains 64KB of virtual machine data. The size of a sparse extent should be a multiple of
grainSize. Each grain starts at an offset that is a multiple of the grain size.

Accessing a Sector in a Hosted Sparse Extent

Assume you want access to data in sector x stored in a link containing a single sparse extent. You need to locate
the grain containing this sector (if it exists) by first looking up the grain directory entry to find the location of
the grain table that records the grain’s location.

VMware, Inc. 8

Virtual Disk Format 5.0

If grainSize is defined as
grain = 26 sectors
then the area accessible with a single grain table is

gtCoverage = number of GTEs per GT x grainSize
=512 x 26
= 29 x 2G
=2%G gectors

If the grainSize is 128 sectors, then:

gtCoverage = 2%/
=216 gectors
=32MB

To verify that the grain containing the sector has been allocated, you must examine a grain table. To find the
grain table you need, examine the grain directory entry at offset floor(x/gtCoverage) in the grain directory.

GDE = GD [floor(x/gtCoverage)]

Function floor is defined as: floor(s) is an integer such that
floor(s) < s < floor(s) + 1

Using this grain directory entry, you can locate the grain table. The grain you want is pointed to by
GTE = GT [floor((x % gtCoverage) / grainSize) 1]

If GTE is 0, it means the grain is not yet allocated. All the reads in this grain return sectors of Os (unless there
is a parent link). The first write allocates a grain. If there is no parent, the grain is initialized with Os. If there is
a parent link, you need to respect the copy-on-write semantic and initialize the content of the grain by reading
from the parent.

If GTE is 1, that means the grain is all zeros. All the reads in this grain return sectors of zeros, even if there is
a parent link. The first write allocates a grain, which is initialized with zeros.

Summary

B GDE = GD [floor(x / 2(%+®)]

B GTE = GT [floor((x % 20*®) / 26]

B [GTE == 0] <==>[grainis not present, thus
reads with no parent: return Os;
reads with a parent: read from parent;
writes: allocate a grain and write to it]

B [GTE == 1] <==> [grainis zero —reads: return zeros; writes: allocate a zeroed grain and write to it]

m [GTE > 1] <==> [grainis present, read from and write to it]

ESXi Host Sparse Extents

Sparse extents in ESXi hosts have a different layout from those in the hosted products. The sparse extent
header in an ESXi host refers to the sparse extent as a copy-on-write (COW) disk. There are two levels of
metadata in a sparse extent on an ESXi host.

®m The first level, or the grain directory, refers to the set of grain directory entries (GDEs), where each GDE
covers COW_NUM_LEAF_ENTRIES (=4096) * granularity (=512 bytes) =2MB of data. The grain directory
is stored after the COWDisk header and is updated when a new GDE is initialized or modified.

B The second level in the copy-on-write metadata is a grain table (GT). The grain table is 16KB in size and
covers 4096 data sectors. A new GT is allocated when a new GDE is added and is modified when a new
GTE is allocated.

VMware, Inc. 9

Virtual Disk Format 5.0

A GT is followed by the data sectors corresponding to its GTEs. Because delta links (also called redo logs) are
sparse, all the data sectors are not allocated immediately after a GT. The following diagram shows the layout:

COWDisk header
Grain directory

Grain table

Data corresponding
to GTEs

Grain table

Data corresponding
to GTEs

ESXi Host Sparse Extent Header
The following example shows the content of a sparse extent’s header on an ESXi host:

#define COWDISK_MAX_PARENT_FILELEN 1024

#define COWDISK_MAX_NAME_LEN 60

#define COWDISK_MAX_DESC_LEN 512

typedef struct COWDisk_Header {
uint32 magicNumber;
uint32 version;
uint32 flags;
uint32 numSectors;
uint32 grainSize;
uint32 gdOffset;
uint32 numGDEntries;
uint32 freeSector;
union {

struct {

uint32 cylinders;
uint32 heads;
uint32 sectors;

} root;
struct {
char parentFileName [COWDISK_MAX_PARENT_FILELEN];
uint32 parentGeneration;
} child;
}ou;
uint32 generation;
char name [COWDISK_MAX_NAME_LEN] ;
char description[COWDISK_MAX_DESC_LEN];
uint32 savedGeneration;
char reserved[8];
uint32 uncleanShutdown;
char padding[396];

} COwDisk_Header;
Notes:

B magicNumber is set to Ox44574143 which is ASCII COWD.

® version - The value of this entry should be 1.

m flagsissetto 3.

B numSectors refers to total number of sectors on the base disk.

B grainSizeisthe granularity of data stored in delta links. This varies from one sector (the default) to 1IMB.
B gdOffset starts at the fourth sector, because the COWDisk_Header structure takes four sectors.

B numGDEntries is CEILING(numSectors, gtCoverage)

VMware, Inc. 10

Virtual Disk Format 5.0

B freeSector is the next free data sector. It must be less than the length of the delta link. It is initially set to
gdOoffset + numGDSectors;

B savedGeneration is used to detect the unclean shutdown of the delta link. It is initially set to 0.

B uncleanShutDown is used to trigger the metadata consistency check in case there is an abnormal
termination of the program.

B The remaining fields are not used. They are present for compatibility with legacy virtual disk formats.

ESXi Host Sparse Extent Metadata

The metadata for an ESXi host sparse extent is similar to that for a sparse extent in a hosted VMware product,
as described in “Hosted Sparse Extent Metadata” on page 8, with the following exceptions:

B ESXi sparse extents do not include redundant copies of the grain directory.
® Grain tables have 4096 entries.

® Each grain contains 512 bytes.

Accessing a Sector in an ESXi Host Sparse Extent

The method for accessing a sector in an ESXi host sparse extent is similar to that described in “Accessing a
Sector in a Hosted Sparse Extent” on page 8. Be sure to allow for the differences in metadata described above.

Stream-Optimized Compressed

Stream-optimized compressed extents are meant to be easily streamed over a network link. They are designed
to minimize the memory footprint of the server streaming the virtual disk and also allow for the use of a simple
client application to read the virtual disk data. This virtual disk type is used primarily in the monolithic form,
typically for delivery of OVF virtual appliances.

Each stream-optimized compressed sparse extent is made of the following blocks:

' N\

Sparse header

Embedded descriptor

Grain marker

Compressed grain

Grain table marker

Grain table

Grain marker

Compressed grain

Grain table marker

Grain table

(-]

Grain directory marker

Grain directory

Footer marker

Footer

End-of-stream marker

VMware, Inc. 11

Virtual Disk Format 5.0

Each marker and its associated block begin on a sector or 512-byte boundary. Each marker can be seen as a C
structure with the following layout:

struct Marker {
SectorType val;
uint32 size;
union {
uint32 type;
uint8 datal[0];
}ou;
};
There are five types of markers: compressed grain markers, grain table markers, grain directory markers,
footer markets, and end-of-stream markers. Grain markers are indicated by a non-zero size so there is no type
ID for them.

#define MARKER_EOS 0
#define MARKER_GT 1
#define MARKER_GD 2
#define MARKER_FOOTER 3

Based on the values of val, size, and type, you can distinguish between the various types of markers and
their associated blocks. Additional types may be defined in the future to indicate various metadata elements.

In the following discussion of marker types, mis a pointer to a marker defined by the Marker structure.

Compressed Grain Marker

Pointer m is a marker for a compressed grain if m—>size != 0. In this case, the marker and block have the
following layout:

struct GrainMarker {
SectorType 1lba;
uint32 size;
uint8 data[0];
};

In this structure:
B lbais the offset in the virtual disk where the block of compressed data is located
B sizeis the size of the compressed data in bytes

B data is the data compressed with RFC 1951

End-of-Stream Marker

Pointer m is an end-of-stream marker if n—>size == 0 & & m—>u.type == MARKER_EOS. The end-of-stream
marker signals the end of the virtual disk. Each end-of-stream marker is padded to occupy a sector. The
structure looks like this:

struct EOSMarker {
SectorType val;

uint32 size;
uint32 type;
uint8 pad[496];

b
In this structure:
m valiso.
B sizeisO.
m type is MARKER_EOS (0).

B pad is unused. It must be written as zero and ignored on read.

VMware, Inc. 12

Virtual Disk Format 5.0

Metadata Markers

Markers used to signal the blocks containing grain tables, grain directories, or footers have the same layout.
If m—>size == 0 & & m—>u.type == MARKER_GT, mis a marker for a grain table.

If m—>size == 0 & m->u.type == MARKER_GD, mis a marker for a grain directory.

If m—>size == 0 && m—>u.type == MARKER_FOOTER, mis a marker for a footer.

These markers and the blocks of data they signal have the following layout:

struct MetaDataMarker {
SectorType numSectors;

uint32 size;

uint32 type;

uint8 pad[496];
uint8 metadatal[0];

b
In this structure:
B numSectors is the number of sectors occupied by the metadata, excluding the marker itself.
B sizeisO.
B type is one of MARKER_GT (1), MARKER_GD (2), or MARKER_FOOTER (3).
B pad is unused. It must be written as zero and ignored on read.
B metadata points to a grain table if type is MARKER_GT, a grain directory if type is MARKER_GD, or a footer
if type is MARKER_FOOTER.
Header and Footer

The header and the footer are both described by the same SparseExtentHeader structure shown in “Hosted
Sparse Extent Header” on page 6. The footer takes precedence on the header when it exists. The footer should
be the last block of the disk and immediately followed by the end-of-stream marker so that they together
occupy the last two sectors of the disk.

Stream-optimized compressed sparse disks differ from regular sparse disks in that:

® flags hasbits 16 and 17 set to indicate that the grains are compressed and that each block of metadata or
data is identified by a marker.

m compressAlgorithmis set to COMPRESSION_DEFLATE (1).
This compression algorithm is described in RFC 1951.
B The rgdOffset should be ignored because bit 1 of the flags field is not set.
The header and footer differ in that the field gdOffset is set to
#define GD_AT_END OxFrffffffffffffff

in the copy of the header stored at the very beginning of the extent, whereas it is set to the proper value for the
copy of the header (footer) that is stored at the end of the extent.

VMware, Inc. 13

Virtual Disk Format 5.0

Glossary
Chain - A collection of disk links that can be accessed as a single entity.
Child disk — A disk link in a disk chain that has a parent link.

Delta link — A link made of one or more sparse extents. It is a difference link, a child of a parent link. It contains
only data that the guest operating system has written to the disk after the creation of the delta link. It allows
software to go back in time and, by simply removing the delta link, restore the content of the disk to its state
immediately before creation of the delta link. Delta links are also called redo-log files.

Descriptor — Data about the disk abstraction, such as total space or an extent list. The descriptor may be in a
separate file or embedded in the header of a sparse extent. An embedded disk descriptor is placed in the first
extent of a disk link rather than in a separate disk descriptor file. An embedded disk descriptor can be used
only when the first extent of a link is sparse.

Disk — A disk chain that appears to the guest operating system as a single physical disk.

Disk database — A name-value pair text database found in the disk descriptor. It contains information that the
disk library does not need for disk function. Examples of these kinds of values are virtual hardware version
and VMware Tools version.

Extent — A region of a disk link backed by a region of a file or device. An extent can be sparse, flat, or device.
An extent does not have notions of disk properties but acts purely as storage of a certain size. A flat extent is
an extent backed by a flat file. Flat extents are also called plain or preallocated. A sparse extent is an extent that
does not allocate its data storage space in advance, but allocates as it goes along, and keeps track of whether
or not data is represented in the extent. Sparse extents are also called growable.

Flat — Space in a VMDK is fully allocated at creation time (pre-allocated). Contrast with sparse.

Grain — A block of sectors containing data for the virtual machine’s disk. Granularity defines the size of a grain.
Each grain table entry points to one grain.

Granularity — The size of a single grain in a sparse extent.

Grain directory — Metadata identifying the locations of grain tables. The grain directory is ignored by recent
VMware programs because the grain table is allocated in advance.

Grain table — Metadata identifying the locations of grains.
Link — A single node in a disk chain. A link consists of one or more extents.
Parent link — A link that has a child. A parent may itself have a parent.

Sparse — Space in a VMDK is allocated only when needed to store data (growable). Contrast with flat.

If you have comments about this documentation, submit your feedback to: docfeedback@vmware.com

VMware, Inc. 3401 Hillview Ave., Palo Alto, CA 94304 www.vmware.com

Copyright © 2007, 2011 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are
covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or
other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Item: EN-000777-00

Updated: 12/20/11

14

http://www.vmware.com/go/patents
mailto:docfeedback@vmware.com

	Virtual Disk Format 5.0
	Virtual Disks for Virtual Machines
	Layout Basics
	The Descriptor File
	The Header
	The Extents
	The Disk Database
	Layout of the Example Disk

	Simple Extents
	Monolithic or Flat VMDK
	Accessing a Sector in a Flat Extent

	Hosted Sparse Extents
	Hosted Sparse Extent Header
	Version 2 Hosted Sparse Extents
	Hosted Sparse Extent Metadata
	Accessing a Sector in a Hosted Sparse Extent
	Summary

	ESXi Host Sparse Extents
	ESXi Host Sparse Extent Header
	ESXi Host Sparse Extent Metadata
	Accessing a Sector in an ESXi Host Sparse Extent

	Stream-Optimized Compressed
	Compressed Grain Marker
	End-of-Stream Marker
	Metadata Markers
	Header and Footer

	Glossary

